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ABSTRACT

A historical prospective on the methods that have been used

to automatically detect event signals and pick first arrival

times is developed. Then the data set used to characterize and

test the detection techni ques is described. Next the features %

which discriminate seismic signals effectively from the back-

ground noise are characterized.

Two automatic detection methods are investigated. (1) The

AR (8)-spectral estimates of the signal and noise are used to

develop the AR (p)-spectral estimate for a synthetic waveform.

(2) Several non-parametric tests are employed in a time domain

detector to discriminate event signals from background.

The non-parametric detector chosen, RANK 2700, employs a

modified rank sum test to locate the seismic event and pick its

first arrival time. Errors in the automatic first arrival picks

for 152 of the event traces in the data set are used to analyze

the performance of the RANK 2700 detector.
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INTRODUCTION

Since the advent of the computer, work has been done

in many fields to develop techniques to harness the

computer to do large tedious jobs more swiftly and with
0

fewer fluctuations in performance than its human

counterpart. One of these fields is the identification

and classification of seismic signals from digital seismic

event records.

There are thousands of seismic events occurring every

day and hundreds of seismic stations. It is not practical
0

to evaluate all these seismic records at the speed -.

necessary to keep up with the influx of data. Thus, many

studies have been conducted to implement various

techniques to (1) determine first arrival times, (2)

classify the seismic events correctly and (3) locate the

origins of the seismic events.

It is becoming increasingly uneconomical to pick %0

first arrivals by hand and a computer can be used to

identify first arrivals more consistently than would be

picked by hand on an oscillogram. At the same time,

digital recorders are becoming more common on even low-

cost seismic systems, and it can be expected that in the

future computer techniques will become more attractive. I



Historical Prospective on Methods Used To
Automatically Detect Events and

Pick First Arrival Times

Many scientists, including R.V. Allen (1978), K.R.

Anderson (1978), R. Blandford (1983), K.S.Fu (1982), J.E.

Gaby (1983), and H.H. Liu (1981) have tried to devise an

effective automatic pattern recognition system for seismic

signals during the last twenty years. Computer techniques

for picking first events have yet to gain widespread

acceptance (P.J. Hatherly, 1982). Effective results have

been elusive due to the nature of the seismic signals and

the methods used to model and predict the observed values.

Both statistical methods; i.e.,maximum likelihood

estimator, maximum entropy spectra, etc. (C.H. Chen,

1981), and structural methods; i.e., pattern recognition

schemes that use shape features such as slope, radius of

curvative, period and amplitude, (J.E. Gaby and K.

Anderson, 1983), have been employed to characterize and

identify seismic events.

Statistical classification algorithms can be grouped

into one of two types, parametric or non-parametric.

Parametric algorithms assume a particular class

statistical distribution, commonly the normal

distribution, and then estimate the parameters of that

distribution, such as the mean and variance, to use in

algorithm classification. Non-parametric algorithms make

2
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no assumptions about the class distributions. Non-

parametric techniques are sometimes termed robust because

they work well for a wide variety of class distributions,

if the class signatures (mean, variance, etc.) are

reasonably distinct. Parametric techniques usually yield

good results under the same conditions as the non-

parametric techniques if the signatures of the classes are

reasonably distinct, even If the assumed class

distribution is invalid.

The most effective example of the statistical methods
S

is 94% correct recognition of regional and teleseismic

events using maximum entropy spectra and spectral ratio

(energy>O.5Hz/energy<O.5Hz), (C.H. Chen, 1982). But even
S

94% is not a good enough performance record for an

automatic pattern recognition system. A system cannot be

considered automatic if it requires human watchdogs to

monitor its progress and correct mistakes.

Part of the problem of correctly characterizing and

classifying seismic signals is in obtaining an accurate

first arrival time. There is always ambiguity associated

with measuring the first arrival time from seismograms,

whether It is done by seismologist or machine, since these

signals of finite bandwidth are of unknown shape and

contaminated by noise. Such ambiguity can be reduced by

combining the processes of picking arrivals in an

Iterative fashion (C.H. Chen, 1982). Inaccurate first

'3'



arrivals distort the structural and statistical

characterizations of a seismic event that are used for

classification.

Effective results have been elusive due to the nature

of the seismic signal which contains events contaminated

by noise. In many fields of signal processing: for

example, the development of speech recognition systems,

the automatic analysis of signals requires the recognition

of specific features in the signal. (Gaby and Anderson,

1983) Since more a priori knowledge exists about the

characteristic shapes of words, it is easier to

automatically identify a word and classify it correctly.

The paucity of a priori information available on the

morphologies (shapes) of seismic signals inhibits

automatic pattern recognition (Gaby and Anderson, 1983).

The lack of a priori knowledge characterizing seismic

signals has prompted the recent application of pattern 'U

recognition techniques to find and develop methods to

discriminate and classify seismic signals. The methods

used to find the broad characteristics of a seismic event

include storing the trace in a binary tree structure and

using affinity techniques, first developed for imageI!
processing, to combine small segments of the signal and

store the signal within the tree structure at different
',

levels of complexity (Gaby and Anderson, 1983). In other

words, this method would use features such as period,

4%4.
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slope and amplitude to divide the event trace Into

segments and then try to associate those segments with the

sequence of arrival phases that make up a seismic event.

Augmented transition networks (ATN), originally

created to provide a formal environment to develop

grammatical rules describing finite state grammers, have

also been used to develop seismic signal structural

characteristics interactively (Anderson, 1981).

All the techniqes for seismic pattern recognition

schemes require that the first arrival time of the

waveform be known. The seismologist uses the morphology

(shape) of the seismic signal to identify the first

arrival time correctly along with changes in period and

amplitude. Determining the correct first arrival time is

important in classifying the signal and locating the

origin of the seismic event. For an automatic pattern

recognition system to replace the seismologist it must

Identify first arrival times correctly and classify the

event with better than the 94% current success rate of

techniques previously attempted.

Automatic processes that have been employed to

determine first arrival times rely on statistics to

distinguish between two populations (signal and noise)

occurring on a seismic trace. Since the density

distribution functions for both the signal and noise are

not known a priori they have traditionally been estimated

5
I



by Gaussian density distribution functions. The reason j
for this is that the statistics (i.e., the divergence and

linear discriminant functions) for characterizing Gaussian

(normal) distributions are well known and easily available

for computation.

The standard statistics for a normal distribution

have traditionally been used to characterize the signal

and noise making it possible to determine first arrival

times by comparing parameters from the two populations.

Using the standard statistics for a normal distribution to

characterize the noise a predictive model is constructed

to predict future seismic noise values.

There should be a failure of the observed data to

match the predicted value at the first arrival because the

arrival of the seismic signal is not predictable from the

background noise. Robinson(1967) wrote subroutines to

pass the proposed first arrival if there was a significant

prediction error at the first arrival and for two terms

after it. Significance was established by making

comparisions with the prediction errors within the noise.

A test, which predicts the values at the first arrival

from the previous values using the technique of linear

least-square prediction, was first used by Wadsworth et

al(1953) to identify seismic events on the basis of a

prediction failure. (P.J. Hatherly, 1982)

Most techniques to distinguish noise from the first

6



arrival signal use parametric statistics which assume the

signal has a known distribution. This is an incorrect

assumption for the background noise preceding a seismic

event. In general, background noise is a non-stationary

process due to seasonal changes and atmospheric

vari "ions, with an unknown distribution. Over a short

time interval, less than 100 seconds, background noise can

usually be considered stationary except in the case where

it precedes a seismic event. When a seismic event occurs

the mean of the signal often flucuates while the transient

signal is being recorded by the seismic instrument.

Non-stationary processes have time changing means

and/or variances. Stationary process implies that the

mean, the variance and the autocovariances of the process

are invariant under time translations. Thus the mean and

variance are constant, and the autocovariances depend only

on the lag time.

Non-stationary time series have been modeled by

several processes: (1) Harrison(1964) used an

exponentially weighted moving average, EWMA, to forecast

seasonal short term sales. (2) A modified autogressive

moving average, ARMA, model with time varying coefficients

of the form:

r

bkt~ect*xt_. + dt , r = max(p-1,q-m)

has been used by P. Whittle (1965), to model non-

7
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stationary time series. Prediction formulas applied in

the stationary case are shown by Niemi(1983) to also be

valid in the non-stationary case. The effects of the non-

stationarity on the estimation of the parameters of the

underlying ARMA model are not shown to be significant. (3)

The autoregressive integrated moving average, ARIMA.

method, based on Gaussian stochastic processes was

developed by Box and Jenkins (1970) to model homogeneous

non-stationary time series.

Homogeneous non-stationarity implies the changing

mean can be described by a low order polynomial in time.

However, the coefficients of the polynomial are not

constant but vary with time. The observations are

described by random stochastic trends (polynomials).

Tintner (1940), Yaglom (1955), and Box and Jenkins (1976)

argue that homogeneous non-stationary sequences can be

transformed into stationary sequences by taking successive

differences of the series.

In practice it Is usually the first or second

integral of a non-stationary process which is stationary.

The ARIMA technique integrates the non-stationary time

series until it is stationary and then models the

resulting time series as an ARMA process. Under fairly

general conditions the prediction interval for a future

observation in an ARIMA scheme is robust with respect to

symmetric non-normality of the error distribution,

8
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IHeuts(1981).

Non-parametric methods that make no assumptions about

the density distribution of the time series are outlined

by Kassam and Thomas(1975). Cobben(1982) outlines a non-

parametric detector based on a sign test that

discriminates between:

H0 : x(t) - n(t) //data = noise//

Ha: x(t) = s(t) + n(t) //data = signal + noise//

included in Kassam and Thomas (1980). The sign test was

extended by Cox (1955) to detect steps and ramps in the

presence of additive noise; i.e., signals with sharp onset

and gradual onset first arrivals. Cobben's method assumes

a stationary signal which may be a valid assumption for a

time window of less than 100 seconds, (C.H. Chen, 1978).

Although background noise may possibly be considered

stationary, It cannot be assummed to be Gaussian. Various

known and unknown processes: microseisms which are "non-

Gaussian"; thermal noise due to current across resistors

which is "Gaussian"; and seismometer noise which is

"distributed as 1/f" contribute to form a non-Gaussian

density distribution. Although, Heuts (1981), has shown

that an ARIMA prediction model (based on an assumption of

Gaussian and stochastic data) is robust with respect to

symmetric non-normality of the error distribution.

parametric techniques are generally incorrect for

9 1
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distinguishing noise from the first arrival.

Part of the difficulty in automatically classifying

seismic signals and locating their origin is a direct

result of incorrect first arrival times picked by methods

assuming an underlying Gaussian distribution for the

signal. Since the seismic signals have an unknown

underlying distribution a method for first arrival

detection using non-parametric statistics should be

developed in the hopes that it will improve the accuracy

of the first arrival time.

Once the first arrival time can be swiftly and

accurately located the morphological and statistical

methods of classifying seismic signals can be used with

greater accuracy since thc correct sequence of events (or "

states) that characterize the seismic signal will be

readily available. The first arrival on the seismic trace

is identified as the first observation which is
statistically different from the observation before. The

point chosen is dependent on the signal to noise (SIN)

ratio and the amplification of the seismic signal (P.J.

Hatherly, 1982).

Some signal detection schemes used to record events -

in real time use the spectrum found using the Walsh

(Goforth and Herrin, 1981) or Fourier (Blandford, 1983) *1
transforms of the signal to distinguish the signal from

the background noise. These methods while effective for_11o

10



real time detection of events can only locate the first

arrival time within one window (a block of observed data

values transformed to provide a spectrum for comparision).

Figure 1 illustrates the fast Walsh transform.

If this window is large enough to detect the first

arrival (greater than two times the longest period of the

expected signal, 2.5 seconds in. our case) it will not be

small enough to accurately determine first arrival times

for the purpose of classifying and locating the origin of

events. This indicates an effective automatic first -

arrival picker should be implemented in the time domain.

Methods Attempted in this Study

Since the signal is nonstationary with an unknown

distribution function it is logical to develop a detector

that does not assume stationarity; i.e., constant mean and

constant variance, or a "known" distribution function.

There is a broad range of amplitudes and bandwidths which

characterize local, regional and teleseismic earthquakes

and explosions. Thus, we must develop features to

distinguish a broad category of signals from the

background noise.

Since the seismic signal we record has an unknown

distribution, it is important to determine how valid some

of the parametric techniques; i.e., techniques that assume

a know distribution, are when applied to a seismic signal.


